Two-Stage Fuzzy Multiple Kernel Learning Based on Hilbert–Schmidt Independence Criterion
نویسندگان
چکیده
منابع مشابه
Two-Stage Learning Kernel Algorithms
This paper examines two-stage techniques for learning kernels based on a notion of alignment. It presents a number of novel theoretical, algorithmic, and empirical results for alignmentbased techniques. Our results build on previous work by Cristianini et al. (2001), but we adopt a different definition of kernel alignment and significantly extend that work in several directions: we give a novel...
متن کاملA Binary Classification Framework for Two-Stage Multiple Kernel Learning
With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of prespecified base kernels that is suitable for the task at hand has received significant attention from researchers. In this paper we show that Multiple Kernel Learning can be framed as a...
متن کاملSemi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion
In this paper, a novel semi-supervised dictionary learning and sparse representation (SS-DLSR) is proposed. The proposed method benefits from the supervisory information by learning the dictionary in a space where the dependency between the data and class labels is maximized. This maximization is performed using Hilbert-Schmidt independence criterion (HSIC). On the other hand, the global distri...
متن کاملOn Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion
The Hilbert-Schmidt independence criterion (HSIC) is a kernel-based statistical independence measure that can be computed very efficiently. However, it requires us to determine the kernel parameters heuristically because no objective model selection method is available. Least-squares mutual information (LSMI) is another statistical independence measure that is based on direct density-ratio esti...
متن کاملTwo-Layer Multiple Kernel Learning
Multiple Kernel Learning (MKL) aims to learn kernel machines for solving a real machine learning problem (e.g. classification) by exploring the combinations of multiple kernels. The traditional MKL approach is in general “shallow” in the sense that the target kernel is simply a linear (or convex) combination of some base kernels. In this paper, we investigate a framework of Multi-Layer Multiple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Fuzzy Systems
سال: 2018
ISSN: 1063-6706,1941-0034
DOI: 10.1109/tfuzz.2018.2848224